Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Nat Plants ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714768

RESUMEN

Phytochrome A (phyA) is the plant far-red (FR) light photoreceptor and plays an essential role in regulating photomorphogenic development in FR-rich conditions, such as canopy shade. It has long been observed that phyA is a phosphoprotein in vivo; however, the protein kinases that could phosphorylate phyA remain largely unknown. Here we show that a small protein kinase family, consisting of four members named PHOTOREGULATORY PROTEIN KINASES (PPKs) (also known as MUT9-LIKE KINASES), directly phosphorylate phyA in vitro and in vivo. In addition, TANDEM ZINC-FINGER/PLUS3 (TZP), a recently characterized phyA-interacting protein required for in vivo phosphorylation of phyA, is also directly phosphorylated by PPKs. We reveal that TZP contains two intrinsically disordered regions in its amino-terminal domain that undergo liquid-liquid phase separation (LLPS) upon light exposure. The LLPS of TZP promotes colocalization and interaction between PPKs and phyA, thus facilitating PPK-mediated phosphorylation of phyA in FR light. Our study identifies PPKs as a class of protein kinases mediating the phosphorylation of phyA and demonstrates that the LLPS of TZP contributes significantly to more production of the phosphorylated phyA form in FR light.

2.
Front Genet ; 15: 1379366, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38655056

RESUMEN

Objective: The article aims to provide genetic counseling to a family with two children who were experiencing growth and developmental delays. Methods: Clinical information of the proband was collected. Peripheral blood was collected from core family members to identify the initial reason for growth and developmental delays by whole exome sequencing (WES) and Sanger sequencing. To ascertain the consequences of the newly discovered variants, details of the variants detected were analyzed by bioinformatic tools. Furthermore, we performed in vitro experimentation targeting SNX14 gene expression to confirm whether the variants could alter the expression of SNX14. Results: The proband had prenatal ultrasound findings that included flattened frontal bones, increased interocular distance, widened bilateral cerebral sulci, and shortened long bones, which resulted in subsequent postnatal developmental delays. The older sister also displayed growth developmental delays and poor muscle tone. WES identified compound heterozygous variants of c.712A>T (p.Arg238Ter) and .2744A>T (p.Gln915Leu) in the SNX14 gene in these two children. Both are novel missense variant that originates from the father and mother, respectively. Sanger sequencing confirmed this result. Following the guideline of the American College of Medical Genetics and Genomics (ACMG), the SNX14 c.712A>T (p.Arg238Ter) variant was predicted to be pathogenic (P), while the SNX14 c.2744A>T (p.Gln915Leu) variant was predicted to be a variant of uncertain significance (VUS). The structural analysis revealed that the c.2744A>T (p.Gln915Leu) variant may impact the stability of the SNX14 protein. In vitro experiments demonstrated that both variants reduced SNX14 expression. Conclusion: The SNX14 gene c.712A>T (p.Arg238Ter) and c.2744A>T (p.Gln915Leu) were identified as the genetic causes of growth and developmental delay in two affected children. This conclusion was based on the clinical presentations of the children, structural analysis of the mutant protein, and in vitro experimental validation. This discovery expands the range of SNX14 gene variants and provides a foundation for genetic counseling and guidance for future pregnancies in the affected children's families.

3.
Micromachines (Basel) ; 15(3)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38542593

RESUMEN

A gyroscope-free strapdown inertial navigation system (GFSINS) solves the carrier attitude through the reasonable spatial combination of accelerometers, with a particular focus on the precision of angular velocity calculation. This paper conducts an analysis of a twelve-accelerometer configuration scheme and proposes an angular velocity fusion algorithm based on the Kalman filter. To address the sign misjudgment issue that may arise when calculating angular velocity using the extraction algorithm, a sliding window correction method is introduced to enhance the accuracy of angular velocity calculation. Additionally, the data from the integral algorithm and the data from the improved extraction algorithm are fused using Kalman filtering to obtain the optimal estimation of angular velocity. Simulation results demonstrate that this algorithm significantly reduces the maximum value and standard deviation of angular velocity error by one order of magnitude compared to existing algorithms. Experimental results indicate that the algorithm's calculated angle exhibits an average difference of less than 0.5° compared to the angle measured by the laser tracker. This level of accuracy meets the requirements for attitude measurement in the laser scanning projection system.

4.
Mol Cytogenet ; 17(1): 4, 2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38369498

RESUMEN

OBJECTIVE: The primary object of this study is to analyze chromosomal abnormalities in miscarriages detected by copy number variants sequencing (CNV-Seq), establish potential pathways or genes related to miscarriages, and provide guidance for birth health in the following pregnancies. METHODS: This study enrolled 580 miscarriage cases with paired clinical information and chromosomal detection results analyzed by CNV-Seq. Further bioinformatic analyses were performed on validated pathogenic CNVs (pCNVs). RESULTS: Of 580 miscarriage cases, three were excluded as maternal cell contamination, 357 cases showed abnormal chromosomal results, and the remaining 220 were normal, with a positive detection rate of 61.87% (357/577). In the 357 miscarriage cases, 470 variants were discovered, of which 65.32% (307/470) were pathogenic. Among all variants detected, 251 were numerical chromosomal abnormalities, and 219 were structural abnormalities. With advanced maternal age, the proportion of numerical abnormalities increased, but the proportion of structural abnormalities decreased. Kyoto Encyclopedia of Genes and Genomes pathway and gene ontology analysis revealed that eleven pathways and 636 biological processes were enriched in pCNVs region genes. Protein-protein interaction analysis of 226 dosage-sensitive genes showed that TP53, CTNNB1, UBE3A, EP300, SOX2, ATM, and MECP2 might be significant in the development of miscarriages. CONCLUSION: Our study provides evidence that chromosomal abnormalities contribute to miscarriages, and emphasizes the significance of microdeletions or duplications in causing miscarriages apart from numerical abnormalities. Essential genes found in pCNVs regions may account for miscarriages which need further validation.

5.
Gene ; 896: 147994, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-37977316

RESUMEN

Craniosynostosis is one of the most common congenital craniofacial birth defects. The genetic etiology is complex, involving syndromic developmental diseases, chromosomal abnormalities, and monogenic non-syndromic diseases. Herein, we presented a proband of craniosynostosis, who firstly displayed structural abnormalities. This research conducted dynamic ultrasound monitoring a fetus with gradually developing intrauterine growth retardation (IUGR). A novel de novo variant c.41G > A: p.W14* in SMAD6 was identified by pedigree analysis and genetic examination approaches. Recombinant plasmid carrying wild-type sequence and mutant that carries c.41G > A in SMAD6 were constructed and transfected into HEK293T cells. mRNA and protein expression of SMAD6 were reduced in SMAD6 mutants compared to the wild type. Cycloheximide (CHX) treatment and si-UPF1 transfection rescued the SMAD6 mRNA expression in the mutant construct, indicating that c.41G > A: p.W14* in SMAD6 triggered nonsense-mediated mRNA degradation (NMD) process and thus led to haploinsufficiency of the protein product. Our study demonstrated that whole-exome sequencing (WES) was a powerful tool for further diagnosis and etiological identification once fetal malformation was detected by ultrasound. Novel de novo c.41G > A: p.W14* in SMAD6 is pathogenic and potentially leads to craniosynostosis via NMD process.


Asunto(s)
Craneosinostosis , Embarazo , Femenino , Humanos , Células HEK293 , Craneosinostosis/diagnóstico por imagen , Craneosinostosis/genética , Feto , ARN Mensajero/genética , China , Proteína smad6/genética , Transactivadores , ARN Helicasas
6.
Heliyon ; 10(1): e23272, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38148819

RESUMEN

Objectives: CHARGE syndrome is a congenital hereditary condition involving multiple systems. Patients are easily misdiagnosed with idiopathic hypogonadotropic hypogonadism (IHH) due to the overlap of clinical manifestations. An accurate clinical diagnosis remains challenging when the predominant clinical manifestation resembles hypogonadotropic hypogonadism. Methods: This original research is conducted based on the genetic finding and analysis of clinical cases. Whole-exome sequencing (WES) and in-silico analyse were performed on two sisters to investigate the pathogenesis in this family. Homology modelling was conducted to evaluate structural changes in the variants. Results: WES and Sanger sequencing revealed two siblings carrying a nonsense mutation (NM_017780.4: c.115C > T) in exon 2 of CHD7 inherited from a mildly affected mother and a missense mutation (NM_015295.3: c.2582T > C) in exon 20 of SMCHD1 inherited from an asymptomatic father. The nonsense mutation in CHD7 was predicted to generate nonsense-mediated decay, whereas the missense mutation in SMCHD1 decreased protein stability. Conclusions: We identified digenic CHD7 and SMCHD1 mutations in IHH-associated diseases for the first time and verified the synergistic role of oligogenic inheritance. It was also determined that WES is an effective tool for distinguishing diseases with overlapping features and establishing a molecular diagnosis for cases with digenic or oligogenic hereditary disorders, which is beneficial for timely treatment, and family genetic counseling.

7.
Plants (Basel) ; 12(23)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38068563

RESUMEN

The allocation of plant biomass above and below ground reflects their strategic resource utilization, crucial for understanding terrestrial carbon flux dynamics. In our comprehensive study, we analyzed biomass distribution patterns in 580 broadleaved and 345 coniferous forests across China from 2005 to 2020, aiming to discern spatial patterns and key drivers of belowground biomass proportion (BGBP) in these ecosystems. Our research revealed a consistent trend: BGBP decreases from northwest to southeast in both forest types. Importantly, coniferous forests exhibited significantly higher BGBP compared to broadleaved forests (p < 0.001). While precipitation and soil nutrients primarily influenced biomass allocation in broadleaved forests, temperature and soil composition played a pivotal role in coniferous forests. Surprisingly, leaf traits had a negligible impact on BGBP (p > 0.05). Climatic factors, such as temperature and rainfall, influenced biomass partitioning in both strata by altering soil nutrients, particularly soil pH. These findings provide valuable insights into understanding carbon sequestration dynamics in forest ecosystems and improving predictions of the future trajectory of this critical carbon cycle component.

8.
Diagn Pathol ; 18(1): 118, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37907964

RESUMEN

BACKGROUND: Nevoid basal cell carcinoma syndrome (NBCCS, Gorlin syndrome) is a rare autosomal dominantly inherited disorder that is characterized by multisystem disorder such as basal cell carcinomas, keratocystic odontogenic tumors and skeletal abnormalities. Bilateral and/or unilateral ovarian fibromas have been reported in individuals diagnosed with NBCCS. CASE PRESENTATION: A 22-year-old female, presented with low back pain, and was found to have bilateral giant adnexal masses on pelvic ultrasonography, which had been suspected to be malignant ovarian tumors. Positron emission tomography/computed tomography showed multiple intracranial calcification and skeletal abnormalities. The left adnexa and right ovarian tumor were resected with laparotomy, and pathology revealed bilateral ovarian fibromas with marked calcification. We recommended the patient to receive genetic testing and dermatological examination. No skin lesion was detected. Germline testing identified pathogenic heterozygous mutation in PTCH1 (Patched1). CONCLUSIONS: The possibility of NBCCS needs to be considered in patients with ovarian fibromas diagnosed in an early age. Skin lesions are not necessary for the diagnosis of NBCCS. Ovarian fibromas are managed with surgical excision with an attempt at preserving ovarian function. Follow-up regime and counseling on options for future fertility should be offered to patients.


Asunto(s)
Síndrome del Nevo Basocelular , Fibroma , Quistes Odontogénicos , Neoplasias Ováricas , Femenino , Humanos , Adulto Joven , Adulto , Síndrome del Nevo Basocelular/diagnóstico , Síndrome del Nevo Basocelular/genética , Síndrome del Nevo Basocelular/cirugía , Fibroma/diagnóstico , Fibroma/genética , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/genética
9.
Artículo en Inglés | MEDLINE | ID: mdl-37856819

RESUMEN

Copy number variations (CNVs) in chromosome 16p11.2 are not rare. 16p11.2 microdeletion is among the most commonly known genetic etiologies of overweightness, autism spectrum disorder (ASD), and related neurodevelopmental disorders. We report the prenatal diagnosis and genetic counseling of three cases with inherited 16p11.2 microdeletions. In these families, mother/father and fetus have the same microdeletion. Following the use of molecular genetic techniques including array-based methods, the number of reported cases has rapidly increased. A combination of prenatal three-dimensional ultrasound, karyotype analysis, chromosomal microarray analysis (CMA), copy number variation sequencing (CNV-seq), whole-exome sequencing (WES), and genetic counseling is helpful for the prenatal diagnosis of chromosomal microdeletions/microduplications.

12.
ACS Nano ; 17(17): 16923-16934, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37606317

RESUMEN

Multidrug resistance (MDR) is a major cause of chemotherapy failure in oncology, and gene therapy is an excellent measure to reverse MDR. However, conventional gene therapy only modulates the expression of MDR-associated proteins but hardly affects their existing function, thus limiting the efficiency of tumor treatment. Herein, we designed a photoactivated DNA nanodrug (MCD@TMPyP4@DOX) to improve tumor chemosensitivity through the downregulation of MDR-related genes and mitochondria-targeted photodynamic therapy (PDT). The self-assembled DNA nanodrug encodes the mucin 1 (MUC1) aptamer and the cytochrome C (CytC) aptamer to facilitate its selective targeting to the mitochondria in tumor cells; the encoded P-gp DNAzyme can specifically cleave the substrate and silence MDR1 mRNA with the help of Mg2+ cofactors. Under near-infrared (NIR) light irradiation, PDT generates reactive oxygen species (ROS) that precisely damage the mitochondria of tumor cells and break single-stranded DNA (ssDNA) to activate MCD@TMPyP4@DOX self-disassembly for release of DOX and DNAzyme. We have demonstrated that this multifunctional DNA nanodrug has high drug delivery capacity and biosafety. It enables downregulation of P-gp expression while reducing the ATP on which P-gp pumps out drugs, improving the latency of gene therapy and synergistically reducing DOX efflux to sensitize tumor chemotherapy. We envision that this gene-modulating DNA nanodrug based on damaging mitochondria is expected to provide an important perspective for sensitizing tumor chemotherapy.


Asunto(s)
ADN Catalítico , Nanopartículas , Resistencia a Antineoplásicos , ADN , ADN de Cadena Simple , Terapia Genética , Mitocondrias , Nanopartículas/uso terapéutico
13.
Bioresour Technol ; 386: 129568, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37506940

RESUMEN

This study investigated the influence of thermally modified tourmaline (Tur) on hydrogen production during the dark fermentation of corn stover. Single-factor experimental results revealed influencing factors of particle size, mass, and temperature. Optimization of the experimental process was achieved using the Box-Behnken design, reaching optimum at conditions of 407 °C, 910-mesh, and 6.2 g. The principle analysis experiment showed that the Tur-enhanced group (Tur_En) amplified cumulative hydrogen production by elevating hydrogen production during the sugar-production stage. The Tur_En group's cumulative hydrogen production was measured at 396.2 ± 40.3 (mL/g VS), marking a 34.2% increase compared to the control group. Analysis of microbial diversity indicated that Firmicutes and Bacteroidota emerged as dominant colonies in both stages. Tur facilitated hydrogen production by stimulating the activity of Firmicutes. This study suggests a highly effective Tur-enhanced technology for hydrogen production from corn stover and elucidates the principles underpinning this method from two stages.


Asunto(s)
Hidrógeno , Zea mays , Fermentación , Hidrólisis , Concentración de Iones de Hidrógeno
14.
Nat Commun ; 14(1): 4511, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37500633

RESUMEN

Postoperative tumor recurrence and metastases often lead to cancer treatment failure. Here, we develop a local embedded photodynamic immunomodulatory DNA hydrogel for early warning and inhibition of postoperative tumor recurrence. The DNA hydrogel contains PDL1 aptamers that capture and enrich in situ relapsed tumor cells, increasing local ATP concentration to provide a timely warning signal. When a positive signal is detected, local laser irradiation is performed to trigger photodynamic therapy to kill captured tumor cells and release tumor-associated antigens (TAA). In addition, reactive oxygen species break DNA strands in the hydrogel to release encoded PDL1 aptamer and CpG, which together with TAA promote sufficient systemic antitumor immunotherapy. In a murine model where tumor cells are injected at the surgical site to mimic tumor recurrence, we find that the hydrogel system enables timely detection of tumor recurrence by enriching relapsed tumor cells to increase local ATP concentrations. As a result, a significant inhibitory effect of approximately 88.1% on recurrent tumors and effectively suppressing metastasis, offering a promising avenue for timely and effective treatment of postoperative tumor recurrence.


Asunto(s)
Hidrogeles , Recurrencia Local de Neoplasia , Humanos , Animales , Ratones , Recurrencia Local de Neoplasia/prevención & control , Antígenos de Neoplasias , ADN , Adenosina Trifosfato , Línea Celular Tumoral
15.
Plant Physiol ; 193(2): 1058-1072, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37350505

RESUMEN

Many tree species have developed extensive root systems that allow them to survive in arid environments by obtaining water from a large soil volume. These root systems can transport and redistribute soil water during drought by hydraulic redistribution (HR). A recent study revealed the phenomenon of evaporation-driven hydraulic redistribution (EDHR), which is driven by evaporative demand (transpiration). In this study, we confirmed the occurrence of EDHR in Chinese white poplar (Populus tomentosa) through root sap flow measurements. We utilized microcomputed tomography technology to reconstruct the xylem network of woody lateral roots and proposed conceptual models to verify EDHR from a physical perspective. Our results indicated that EDHR is driven by the internal water potential gradient within the plant xylem network, which requires 3 conditions: high evaporative demand, soil water potential gradient, and special xylem structure of the root junction. The simulations demonstrated that during periods of extreme drought, EDHR could replenish water to dry roots and improve root water potential up to 38.9% to 41.6%. This highlights the crucial eco-physiological importance of EDHR in drought tolerance. Our proposed models provide insights into the complex structure of root junctions and their impact on water movement, thus enhancing our understanding of the relationship between xylem structure and plant hydraulics.


Asunto(s)
Sequías , Populus , Microtomografía por Rayos X , Transpiración de Plantas/fisiología , Raíces de Plantas/fisiología , Plantas , Xilema/fisiología , Agua/fisiología , Suelo/química
16.
J Immunother Cancer ; 11(6)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37380368

RESUMEN

BACKGROUND: As an emerging treatment strategy for triple-negative breast cancer (TNBC), immunotherapy acts in part by inducing ferroptosis. Recent studies have shown that protein arginine methyltransferase 5 (PRMT5) has distinct roles in immunotherapy among multiple cancers by modulating the tumor microenvironment. However, the role of PRMT5 during ferroptosis, especially for TNBC immunotherapy, is unclear. METHODS: PRMT5 expression in TNBC was measured by IHC (immunohistochemistry) staining. To explore the function of PRMT5 in ferroptosis inducers and immunotherapy, functional experiments were conducted. A panel of biochemical assays was used to discover potential mechanisms. RESULTS: PRMT5 promoted ferroptosis resistance in TNBC but impaired ferroptosis resistance in non-TNBC. Mechanistically, PRMT5 selectively methylated KEAP1 and thereby downregulated NRF2 and its downstream targets which can be divided into two groups: pro-ferroptosis and anti-ferroptosis. We found that the cellular ferrous level might be a critical factor in determining cell fate as NRF2 changes. In the context of higher ferrous concentrations in TNBC cells, PRMT5 inhibited the NRF2/HMOX1 pathway and slowed the import of ferrous. In addition, a high PRMT5 protein level indicated strong resistance of TNBC to immunotherapy, and PRMT5 inhibitors potentiated the therapeutic efficacy of immunotherapy. CONCLUSIONS: Our results reveal that the activation of PRMT5 can modulate iron metabolism and drive resistance to ferroptosis inducers and immunotherapy. Accordingly, PRMT5 can be used as a target to change the immune resistance of TNBC.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Proteína 1 Asociada A ECH Tipo Kelch , Factor 2 Relacionado con NF-E2 , Inmunoterapia , Bioensayo , Microambiente Tumoral , Proteína-Arginina N-Metiltransferasas
17.
Phys Eng Sci Med ; 46(3): 981-994, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37378823

RESUMEN

TaiChi, a new multi-modality radiotherapy platform that integrates a linear accelerator, a focusing gamma system, and a kV imaging system within an enclosed O-ring gantry, was introduced into clinical application. This work aims to assess the technological characteristics and commissioning results of the TaiChi platform. The acceptance testing and commissioning were performed following the manufacturer's customer acceptance tests (CAT) and several AAPM Task Group (TG) reports/guidelines. Regarding the linear accelerator (linac), all applicable validation measurements recommended by the MPPG 5.a (basic photon beam model validation, intensity-modulated radiotherapy (IMRT)/volumetric-modulated arc therapy (VMAT) validation, end-to-end(E2E) tests, and patient-specific quality assurance (QA)) were performed. For the focusing gamma system, the absorbed doses were measured using a PTW31014 ion chamber (IC) and PTW60016 diode detector. EBT3 films and a PTW60016 diode detector were employed to measure the relative output factors (ROFs). The E2E tests were performed using PTW31014 IC and EBT3 films. The coincidences between the imaging isocenter and the linac/gamma mechanical isocenter were investigated using EBT3 films. The image quality was evaluated regarding the contrast-to-noise ratio (CNR), spatial resolution, and uniformity. All tests included in the CAT met the manufacturer's specifications. All MPPG 5.a measurements complied with the tolerances. The confidence limits for IMRT/VMAT point dose and dose distribution measurements were achieved according to TG-119. The point dose differences were below 1.68% and gamma passing rates (3%/2 mm) were above 95.1% for the linac E2E tests. All plans of patient-specific QA had point dose differences below 1.79% and gamma passing rates above 96.1% using the 3%/2 mm criterion suggested by TG-218. For the focusing gamma system, the differences between the calculated and measured absorbed doses were below 1.86%. The ROFs calculated by the TPS were independently confirmed within 2% using EBT3 films and a PTW60016 detector. The point dose differences were below 2.57% and gamma passing rates were above 95.3% using the 2%/1 mm criterion for the E2E tests. The coincidences between the imaging isocenter and the linac/gamma mechanical isocenter were within 0.5 mm. The image quality parameters fully complied with the manufacturer's specifications regarding the CNR, spatial resolution, and uniformity. The multi-modality radiotherapy platform complies with the CAT and AAPM commissioning criteria. The commissioning results demonstrate that this platform performs well in mechanical and dosimetry accuracy.


Asunto(s)
Radioterapia de Intensidad Modulada , Radioterapia de Intensidad Modulada/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Aceleradores de Partículas , Dosificación Radioterapéutica , Radiometría
18.
Plant Cell ; 35(8): 2972-2996, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37119311

RESUMEN

Sun-loving plants trigger the shade avoidance syndrome (SAS) to compete against their neighbors for sunlight. Phytochromes are plant red (R) and far-red (FR) light photoreceptors that play a major role in perceiving the shading signals and triggering SAS. Shade induces a reduction in the level of active phytochrome B (phyB), thus increasing the abundance of PHYTOCHROME-INTERACTING FACTORS (PIFs), a group of growth-promoting transcription factors. However, whether other factors are involved in modulating PIF activity in the shade remains largely obscure. Here, we show that SALT OVERLY SENSITIVE2 (SOS2), a protein kinase essential for salt tolerance, positively regulates SAS in Arabidopsis thaliana. SOS2 directly phosphorylates PIF4 and PIF5 at a serine residue close to their conserved motif for binding to active phyB. This phosphorylation thus decreases their interaction with phyB and posttranslationally promotes PIF4 and PIF5 protein accumulation. Notably, the role of SOS2 in regulating PIF4 and PIF5 protein abundance and SAS is more prominent under salt stress. Moreover, phyA and phyB physically interact with SOS2 and promote SOS2 kinase activity in the light. Collectively, our study uncovers an unexpected role of salt-activated SOS2 in promoting SAS by modulating the phyB-PIF module, providing insight into the coordinated response of plants to salt stress and shade.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Fitocromo/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Luz , Fitocromo B/genética , Fitocromo B/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
19.
Nanoscale ; 15(18): 8424-8431, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37093062

RESUMEN

Magnetic-based microfluidic SERS biosensors hold great potential in various biological analyses due to their integrated advantages including easy manipulation, miniaturization and ultrasensitivity. However, it remains challenging to collect reliable SERS nanoprobe signals for quantitative analysis due to the irregular aggregation of magnetic carriers in a microfluidic chamber. Here, magnetic/plasmonic hybrid nanostirrers embedded with a Raman reporter are developed as capture carriers to improve the reliability of microfluidic SERS biosensors. Experimental results revealed that SERS signals from magnetic hybrid nanostirrers could serve as microenvironment beacons of their irregular aggregation, and a signal filtering method was proposed through exploring the relationship between the intensity range of beacons and the signal reproducibility of SERS nanoprobes using interleukin 6 as a model target analyte. Using the signal filtering method, reliable SERS nanoprobe signals with high reproducibility could be picked out from similar microenvironments according to their beacon intensity, and then the influence of irregular aggregation of magnetic carriers on the SERS nanoprobe could be eliminated. The filtered SERS nanoprobe signals also exhibited excellent repeatability from independent tests, which lay a solid foundation for a reliable working curve and subsequent accurate bioassay. This study provides a simple but promising route for reliable microfluidic SERS biosensors, which will further promote their practical application in biological analysis.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Microfluídica , Reproducibilidad de los Resultados , Espectrometría Raman/métodos , Oro , Fenómenos Magnéticos
20.
Cell Regen ; 12(1): 4, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36854987

RESUMEN

Nervous system cancers are the 10th leading cause of death worldwide, many of which are difficult to diagnose and exhibit varying degrees of treatment resistance. The limitations of existing cancer models, such as patient-derived xenograft (PDX) models and genetically engineered mouse (GEM) models, call for the development of novel preclinical cancer models to more faithfully mimic the patient's cancer and offer additional insights. Recent advances in human stem cell biology, organoid, and genome-editing techniques allow us to model nervous system tumors in three types of next-generation tumor models: cell-of-origin models, tumor organoids, and 3D multicellular coculture models. In this review, we introduced and compared different human stem cell/organoid-derived models, and comprehensively summarized and discussed the recently developed models for various primary tumors in the central and peripheral nervous systems, including glioblastoma (GBM), H3K27M-mutant Diffuse Midline Glioma (DMG) and H3G34R-mutant High-grade Glioma (HGG), Low-grade Glioma (LGG), Neurofibromatosis Type 1 (NF1), Neurofibromatosis Type 2 (NF2), Medulloblastoma (MB), Atypical Teratoid/rhabdoid Tumor (AT/RT), and meningioma. We further compared these models with PDX and GEM models, and discussed the opportunities and challenges of precision nervous cancer modeling with human stem cells and organoids.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...